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ABSTRACT

The Cartan matrix of a group algebra generally contains incomplete information

about the decomposition numbers. For the groups SL(2, q), we show that the infor-

mation in the Cartan matrix, along with knowledge that every decomposition number

is either zero or one, is sufficient to recover the complete decomposition matrix. In

the process of proving this, we obtain a new combinatorial description of the decom-

position numbers.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

There are two main directions to go in determining the representation theory of a finite

group G. First, we can examine the group algebra CG over the complex numbers.

Since this algebra is semisimple, its structure is not very hard to determine. In

fact, we can consult the Atlas [5] to find character tables of some impressively large

groups. If we wish to construct the irreducible representations ourselves, we have a

wide array of techniques at our disposal; for instance, we can lift representations from

quotients, induce from subgroups, take tensor products of representations with each

other, compute symmetric or alternating powers, and look for permutation characters

of natural actions of G. Once the irreducible characters are constructed, we have a

complete description of the algebra CG.1

Now let k be an algebraically closed field of prime characteristic p. We can also

ask for the representation theory of the algebra kG, which is not semisimple. This

presents considerable difficulties: not only are the “modular” irreducibles usually

harder to construct (owing to the lack of a natural inner product on the ring of

Brauer characters), but there is also much additional structure in the algebra kG. We

might wish to construct the projective indecomposable modules (PIMs), decompose

the algebra into blocks, find the dimensions of various Ext groups, calculate the

Cartan matrix of the algebra, determine the full submodule lattices of the PIMs,

find projective resolutions for the irreducibles, and so on. Since the algebra CG is

much easier to analyze, it seems natural to use our knowledge of CG as a guide to

1. CG is always a direct sum of complete matrix algebras over C, where the sizes of
the matrices correspond to the character degrees. Knowing the character values is roughly
equivalent to knowing how the group acts.

1
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determining the (possibly very complicated) structure of kG. Indeed, we can often

determine a substantial amount of information about the p-blocks of G from the

character table.

In this exposition, we are going to do the exact opposite. We will assume we

can determine some information about the algebra kG, and ask how we can pin

down the structure of CG. In particular, we will assume we have a good description

of the irreducibles, p-blocks, and Cartan invariants of kG, and our goal will be to

construct the decomposition matrix D. We will primarily be interested in the groups

G = SL(2, pn), but we begin with a few motivating examples. Let G = Alt(4) and

p = 2. The Cartan matrix of kG is:

C =


2 1 1

1 2 1

1 1 2

 .
Since D D = C, we can attempt to “reverse engineer” D using our knowledge of C.

We know that the entries of D are nonnegative integers, and if we ignore arbitrary

permutations of the rows of D, and disallow a row of all zeros, we easily see that

there are a priori two possibilities for the decomposition matrix:

D =


1 0 0

0 1 0

0 0 1

1 1 1

 or D =


1 1 0

1 0 1

0 1 1

 .

The second possibility is quickly eliminated; for instance, the number of ordinary

irreducibles must be greater than the number of modular irreducibles whenever p

divides |G|, which means the decomposition matrix can’t be square. (There also

must be a row corresponding to the trivial module.) Now that the decomposition

matrix is known, one could multiply it by the table of irreducible Brauer characters

to obtain the character table of G on p′-elements. Since there is a unique class of

elements of even order in Alt(4), we could fill in the remainder of the character table
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using row orthogonality. So, for this group and prime, the structure of kG very tightly

constrains the structure of CG.

For a more complicated example, let G = M11 and p = 3. From the Cartan

matrix, one can again try to deduce the decomposition matrix using the equation

D D = C. In this case, we obtain a unique result for D, despite the apparent

complexity of C:

C =



5 3 3 0 2 2 1 0

3 4 3 1 1 2 2 0

3 3 4 1 2 1 2 0

0 1 1 2 0 0 1 0

2 1 2 0 3 1 1 0

2 2 1 0 1 3 1 0

1 2 2 1 1 1 2 0

0 0 0 0 0 0 0 1


, D =



1 1 1 0 1 1 1 0

0 1 1 1 0 0 1 0

1 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0

1 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0

1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1



.

In fact, for many simple or almost simple groups of small order, it seems to be

the case that C uniquely determines D in this way. An interesting exception is

Alt(5) ∼= SL(2, 4) for the prime 2, which we remark on in the following chapter.

Now let G be a p-group. kG has one irreducible module and one p-block (which is

indecomposable as a module over itself), and the Cartan matrix of kG is the one by

one matrix [ |G| ]. Since the decomposition matrix is a list of the character degrees, it

is clear that we cannot determine much about D from the Cartan matrix. We could

allow more information about kG – for instance, knowing the submodule lattice of

kG is equivalent, by work of Jennings, to knowing the order of certain structural

subgroups of G. But even this isn’t enough to determine the decomposition matrix

of G, since these subgroups sometimes have the same orders for groups with quite

different character tables – for instance, C4 × C2 and D8. So, in some cases, rather
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detailed knowledge of the structure of kG tells us very little about CG.

For a final example, suppose B is a cyclic block of kG with Cartan matrix C.

The following result shows that the decomposition matrix of the block can often be

determined using only the matrix equation D D = C:

Proposition 1. Suppose the Brauer tree of B has no exceptional vertex, and is not

a star with three edges. Then there is a unique nonnegative integer matrix D, up to

a permutation of rows, such that D has no zero row and D D = C.

Proof. See the Appendix.

Our main result is that the decomposition matrix D can be recovered from the

Cartan matrix C when G = SL(2, pn). In this case, we will show that the matrix

equation D D = C, together with the knowledge that every decomposition number

is zero or one, suffices to determine D. In the course of proving this result, we will

obtain new combinatorial descriptions of the decomposition matrix of G, and a new

description of the Cartan matrix of G for odd p. These descriptions of D and C have

geometric interpretations as collections of unit n-cubes in Rn.

1.2 Notation

Let p be a prime and n a positive integer; for convenience, let q = pn. Let G =

SL(2, q). In most of what follows, we will not deal with the case n = 1; so we may

as well streamline the exposition and require now that n ≥ 2. Let k an algebraically

closed field of characteristic p. Let σ be the Frobenius automorphism of k over its

prime field, so σ(x) = xp. Note that Fq is the fixed field of σn.

Brauer and Nesbitt first described the simple kG-modules in [2]. Let Vi be the i-

dimensional module obtained by letting G act on homogeneous polynomials of degree

i− 1 in k[x, y].2 Vi is a simple module iff 1 ≤ i ≤ p. For any kG-module M , let Mσ

be the module obtained by precomposing the action of G on M with σ; that is, Mσ

2. In some expositions, including [1] and [4], it is more convenient to let Vi be the (i+1)-
dimensional module obtained by letting G act on homogeneous polynomials of degree i.
Our choice of convention will lead to simpler formulas in chapter 3.
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is the “Frobenius twist” of M . Since σ induces an automorphism of G, the modules

V σ
j

i are simple for 1 ≤ i ≤ p. Furthermore, σ has order n on G, so we may take

0 ≤ j ≤ n− 1 with no loss of generality.

Let J ∈ {1, . . . , p}n, and let Ji be the i-th component of this vector. Brauer and

Nesbitt’s result is that the modules

VJ =
n⊗
i=1

(VJi)
σi−1

form a complete set of irreducible kG-modules. (This also follows from the Steinberg

tensor product theorem.) Note that the dimension of VJ is
∏n
i=1 Ji. The module

obtained for J = (p, . . . , p) is called the Steinberg module. It is projective, and its

character (plus the trivial character) is the doubly transitive permutation character

of the action of G on one dimensional subspaces of kn. When q is even, all other

simple kG-modules fall into the principal block. If q is odd, then there are two other

blocks, and which block VJ belongs to is determined by the parity of
∑n
i=1 Ji. In this

case, we will sometimes refer to the principal and nonprincipal blocks of kG, even

though the Steinberg module is technically another nonprincipal block.

If M is a simple kG-module, let PM be its projective cover. For any set A, we

let P(A) denote the power set of A, and Am the Cartesian product of m copies of A.

For B ⊆ A, A \ B is the difference of the two sets. If X is a matrix, then X is the

transpose of X. Finally, Cn, D2n, Sym(n), and Alt(n) are the cyclic group of order

n, the dihedral group of order 2n, and the symmetric and alternating groups on n

symbols, respectively.

Finally, unless otherwise indicated, the letters D and C denote the decomposition

and Cartan matrices, respectively, of G in defining characteristic. We caution those

not familiar with modular representation theory that C is not a Cartan matrix in

the sense of Lie algebras. Its rows and columns are indexed by the irreducible kG-

modules, and its M,N entry is c
MN

= dim Hom(PM , PN ), which is the number of

times M occurs as a composition factor of PN .



CHAPTER 2

EVEN CHARACTERISTIC

If k has characteristic 2, then the simple kG-modules are parametrized by elements

of {1, 2}n. We will identify an element of this set with a subset of N = {1, . . . , n},
where the subset corresponding to x = (x1, . . . , xn) ∈ {1, 2}n is {i ∈ N | xi = 2}.
Thus, we have 2n simples {VI | I ⊆ N}, where V∅ is the trivial module, VN is the

Steinberg module, and dimVI = 2|I|. We will always think of arithmetic on elements

of N as happening in Z/nZ, so that we have (for instance) VI
σ = VI+1.

2.1 The Cartan Matrix

In [1], Alperin gives a concise combinatorial description of the Cartan invariants c
IJ

of kG. In stating that result, it is convenient to introduce a symmetric relation on

subsets of N .

Definition 2. Subsets I, J ⊆ N are compatible iff, whenever i ∈ I ∩ J , then either

i + 1 ∈ I ∩ J or i + 1 /∈ I ∪ J . As an exception, we require that ∅ and N are not

compatible. We will write I ∼ J when I and J are compatible, and I � J otherwise.

Thus, I and J are compatible iff, whenever maximal sequences of consecutive

elements of I and J have a nonempty intersection, those sequences end at the same

element of N . For instance, if n = 6, we have {1, 2, 3, 4} � {3, 4, 5}, and {2, 4} ∼
{1, 2, 4, 6}.1

With this notation, Alperin’s result is:

c
IJ

=

2n−|I∪J | if I ∼ J

0 if I � J .

1. Since we are thinking of arithmetic in N as happening in Z/nZ, {6, 1, 2} is a maximal
sequence of consecutive elements in {1, 2, 4, 6}.

6
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C ∅ 1 2 3 12 13 23 123
∅ 8 4 4 4 2 2 2 0
1 4 4 2 2 0 2 1 0
2 4 2 4 2 2 1 0 0
3 4 2 2 4 1 0 2 0
12 2 0 2 1 2 0 0 0
13 2 2 1 0 0 2 0 0
23 2 1 0 2 0 0 2 0
123 0 0 0 0 0 0 0 1

Figure 2.1: The matrix C for n = 3

2.2 Factoring C: Statement of Results

It would also be desirable to have a concise combinatorial description of D, the de-

composition matrix. Previous attempts to do so have relied on some knowledge of the

CG-modules; this is reasonable, since the decomposition matrix describes relation-

ships between CG-modules and kG-modules. In particular, this is the route taken

by Srinivasan (for q odd) [12], Burkhardt [3], and van Ham, Springer, and van der

Wel [6], all of whom obtain varying amounts of information about D. The results

obtained in [6], which also include a description of the Cartan matrix (for all q), are

particularly noteworthy for being extremely complicated.

In contrast, we will follow the route indicated in the introduction, using the matrix

equation D D = C to “work backwards” from the combinatorial description of C

above. We will show that this matrix equation basically determines a unique matrix

D. Furthermore, once D is determined, it would be possible to write down the

character table of G without ever having constructed a CG-module. Our main result

is:

Main Theorem. There is a unique nonnegative integer matrix M , up to a permu-

tation of rows, such that:

1. Every entry is a zero or one,

2. Every row contains a nonzero entry, and
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3. M M = C.

At the end of this chapter, we will indicate how the hypothesis that the entries

are zero or one can be lifted from this theorem. However, we need the result in the

form stated above for use in the following chapter, because we will be able to weaken

the hypothesis that M M = C. Moreover, it is not difficult to show that the actual

decomposition matrix D has the required properties:

Proposition 3. D satisfies conditions 1–3 of the theorem.

Proof. Properties 2 and 3 are obvious, so we must show that every decomposition

number is a zero or one. Suppose for the moment that every decomposition number

in column ∅ is a zero or one. If I is any proper subset of N , then ∅ ∼ I, so:

2n−|I| = c∅I =
∑

χ∈Irr(G)

dχ∅dχI ≤
∑

χ∈Irr(G)

d
χI
≤

∑
χ∈Irr(G)

d 2
χI

= c
II

= 2n−|I|.

Therefore we have equality throughout. In particular,
∑
d
χI

=
∑
d 2
χI

, which implies

that every decomposition number in column I is a zero or one. Finally, since c
NN

= 1,

it is clear that the decomposition numbers in column N are all zero or one. Therefore,

it suffices to show that every decomposition number in column ∅ is a zero or one, i.e.,

that the complex character of P∅ is a sum of ordinary irreducible characters, each

with multiplicity one.

By Schur’s Lemma, EndCG(P∅) is a direct sum of complete matrix algebras over

C, each with dimension equal to the multiplicity of an irreducible character as a

constituent of P∅. Consequently, this endomorphism algebra is commutative if and

only if the irreducibles all appear with multiplicity zero or one in P∅. We will now

show that EndCG(P∅) is commutative, using an elementary Hecke algebra argument.2

Let H be a cyclic subgroup of order 2n+1 in G. We claim that P∅ ∼= 1H↑G as CG-

modules. Since H is a 2′-subgroup of G, 1H is projective as a kH-module. Induction

preserves projectives, so 1H↑G is a projective kG-module. By Frobenius reciprocity,

2. I thank Prof. Alperin for pointing out this well-known argument.
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HomkG(1H↑G, 1G) ∼= HomkG(1H , 1G↓H) ∼= k; so 1H↑G has P∅ as a direct summand.

To show that there are no other summands, we check that dim 1H↑G= dimP∅.

Clearly, we have dim 1H↑G= |G : H| = 2n(2n−1). We can compute dimP∅ using

Alperin’s description of the Cartan invariants. Since each composition factor VI of

P∅ has dimension 2|I| and appears with multiplicity c∅I , we calculate:

dimP∅ =
∑
I⊆N

2|I|c∅I =
∑
I(N

2|I|2n−|I| = 2n(2n − 1).

Therefore dim 1H↑G= dimP∅, and we have P∅ ∼= 1H↑G as kG-modules. Since the

modules are projective, P∅ ∼= 1H↑G as CG-modules as well.

To establish the proposition, we must show that EndCG(1H↑G) is commutative.

This endomorphism algebra is isomorphic to the subalgebra of CG spanned by the

double coset sums
∑

g∈HxH
g. We claim that each double coset HxH contains either

the identity or an involution. Clearly, H itself contains the identity, and no involu-

tions. H has index 2 in its normalizer, which is dihedral; so there are 2n+1 involutions

in N(H) \H. Now, suppose a left coset xH * N(H) contains two involutions, y and

z. Then yh = z for some h ∈ H, and 1 = z2 = (yh)2 = hyh−1, so hy = h. But

y /∈ N(H), a contradiction. Therefore, each left coset xH not in N(H) contains at

most one involution.

But G \N(H) consists of |G : H| − 2 = 2n(2n− 1)− 2 = 22n− 2n− 2 left cosets,

and G has a total of (2n − 1)(2n + 1) = 22n − 1 involutions, of which 2n + 1 have

already been accounted for in N(H). This leaves 22n − 2n − 2 involutions, which

means each remaining left coset must have exactly one involution. Thus, each double

coset HxH contains the identity or an involution. Now, the linear extension of the

function α(g) = g−1 to CG is an anti-automorphism of CG, and its restriction to the

algebra spanned by the double coset sums gives an anti-automorphism of that algebra.

But if every double coset contains a group element which is its own inverse, then α

must be the identity function on double coset sums. Since the identity is an anti-

automorphism, the algebra is commutative, which establishes the proposition.
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2.3 A Description of D

We now give a combinatorial description of a matrix E that satisfies the conditions

of the theorem. Of course, once the theorem is proved, we will immediately conclude

that E is the decomposition matrix of G. By describing E now, we will know one

matrix that satisfies conditions 1–3 of the theorem. This will streamline the proof of

the theorem, because any other such matrix will necessarily share certain properties

with E. Our definition of E involves another binary relation on subsets of N :

Definition 4. Let R, I ⊆ N . R respects I if, whenever i ∈ I, then either i + 1 ∈ I
or i ∈ R, but not both. As an exception, we require that ∅ does not respect N . We

write R ≺ I if R respects I, and R ⊀ I otherwise.

Whenever I ( N , define Final(I) = {i ∈ I | i + 1 /∈ I}. Then, for I 6= N ,

an equivalent definition is that R respects I iff R ∩ I = Final(I). For example, if

n = 6 again, then Final({1, 2, 4, 6}) = {2, 4}. Therefore, exactly four sets R respect

{1, 2, 4, 6}, namely {2, 4}, {2, 3, 4}, {2, 4, 5}, and {2, 3, 4, 5}.

Definition 5. Let E be the 2n+ 1 by 2n matrix with columns labeled by P(N), and

rows labeled by P(N) ∪ {St}. If R is a row label and I is a column label, then let

the R, I entry of E be:

e
RI

=



1 if R ⊆ N and R ≺ I

0 if R ⊆ N and R ⊀ I

1 if R = St and I = N

0 if R = St and I 6= N.

Proposition 6. The matrix E satisfies conditions 1–3 of the theorem.

Proof. Clearly, E is a zero-one matrix. It’s also clear that R ≺ ∅ for any R ⊆ N , so

every row has at least one nonzero entry. We must check that E E = C.
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E ∅ 1 2 3 12 13 23 123
∅ 1 0 0 0 0 0 0 0
1 1 1 0 0 0 1 0 0
2 1 0 1 0 1 0 0 0
3 1 0 0 1 0 0 1 0
12 1 1 1 0 0 1 0 0
13 1 1 0 1 0 0 1 0
23 1 0 1 1 1 0 0 0
123 1 1 1 1 0 0 0 0
St 0 0 0 0 0 0 0 1

Figure 2.2: The matrix E for n = 3

Let I, J ⊆ N ; we will check that the I, J entry of C equals the I, J entry of E E.

For convenience, suppose |I| ≥ |J |.3 If I = J = N , then I ∼ J and c
IJ

= 1. From

the definition of ≺, we see that no subset R ⊆ N respects N . So column N of E has

a single one in row St, and thus the I, J entry of E E is also one.

Now suppose I = N and J ( N . Then I � J , so c
IJ

= 0. Since no row R ⊆ N

respects I, columns I and J of E have no ones in common, and thus the I, J entry

of E E is also zero.

Finally, suppose I and J are both proper in N . Then the I, J entry of E E is

simply the number of sets R ⊆ N which respect both I and J . If I � J , then there

is some i ∈ N such that i ∈ I ∩ J , but i + 1 is in exactly one of I and J . Without

loss of generality, say i + 1 ∈ I and i + 1 /∈ J . Then, if R respects both I and J , we

have i /∈ R and i ∈ R, a contradiction. So no R respects both sets, which agrees with

c
IJ

= 0.

Conversely, if I ∼ J , then there is no i ∈ N such that i ∈ I ∩ J and i + 1 is

in exactly one of I or J . In other words, it never happens that i ∈ Final(I) but

i ∈ J \ Final(J), or vice-versa. This implies that the set conditions R ∩ I = Final(I)

and R∩J = Final(J) are not inconsistent, and so there are sets R which respect both

I and J . If R is such a set, then R has uniquely determined intersections with I and

3. Both C and E E are symmetric matrices, so we need only check one of the I, J and
J, I entries.
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J , and there are no restrictions on the other elements of R. So the number of such

sets is 2n−|I∪J |, which is c
IJ

. This proves the proposition.

2.4 Proof of the Main Theorem

Let M be a zero-one matrix with no all-zero row, satisfying M M = C. The rows and

columns of C are labeled by subsets of N , so this induces a labeling of the 2n columns

of M . We will incrementally determine the structure of M , eventually concluding that

it is uniquely determined by these conditions, up to a permutation of its rows.

First, c∅∅ = 2n, so the column of M labeled by ∅ must consist of 2n ones and

some number of zeros. Moreover, if I 6= N , then c∅I = c
II

= 2n−|I|; from this,

we conclude that column I shares a one with column ∅ in exactly as many rows as

column I has ones. That is, every one in column I occurs in a row in which column ∅
also has a one. Therefore, only column N can have a one in a row that has a zero in

column ∅. Since c
NN

= 1 and c∅N = 0, we conclude that there is exactly one such

row, and this row contains a one in column N and no other ones. This accounts for

the unique one in column N . Since there is no zero row, the matrix M has exactly

2n + 1 rows; we label the 2n rows which have a one in column ∅ with the 2n subsets

of N , and the one row with a one in column N with the symbol St. At this point, we

have shown that M has the structure depicted in figure 2.3.

M ∅ ∅ ( I ( N N
∅ 1 * · · · * 0
...

...
...

...
...

N 1 * · · · * 0
St 0 0 · · · 0 1

Figure 2.3: The matrix M after examining c∅I and c
NN

.

Henceforth, we will ignore row St and column N , and concentrate on the principal

block of M . We inductively determine the columns of M according to the following

linear order on subsets of N :
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Definition 7. Let I and J be subsets of N . Then I < J iff there exists a k ∈ N

such that I ∩ {k + 1, . . . , n} = J ∩ {k + 1, . . . , n}, k /∈ I, and k ∈ J .

Thus, we have ∅ < {1} < {2} < {1, 2} < {3} < . . . , and we can think of < as a

“binary enumerative” order on P(N).

We have already determined column ∅ of M , so we now let I be a proper, non-

trivial subset of N , and assume by induction that any column J of M with J < I

has entries matching the corresponding entries of the matrix E described above. We

have two cases, depending on whether |I| > 1 or |I| = 1.

Case |I| > 1: In this case, we will determine the entries in column I using columns

{k} and the Cartan invariants c{k}I , for k ∈ I. First, observe that if k ∈ I, then

{k} < I, so column {k} of M has been uniquely determined.

For each k ∈ I, either k+ 1 ∈ I or k+ 1 /∈ I. If k+ 1 ∈ I, then columns {k} and I

are not compatible, so c{k}I = 0. This implies that column I has a zero in whichever

rows column {k} has a one. Since these are exactly the rows R with k ∈ R, column

I must have zeros in all rows R with k ∈ R.

Conversely, if k + 1 /∈ I, then columns {k} and I are compatible, and c{k}I =

2n−|I| = c
II

. This implies that the ones in column I are restricted to those rows

where column {k} also has a one. Thus, if column {k} has a zero in row R, column I

also has a zero on row R. Since the rows with zeros in column {k} are exactly those

rows with k /∈ R, column I must have zeros in all rows R with k /∈ R.

Repeating this argument for each k ∈ I, we find that column I has zeros in all

rows R except those for which R ∩ I = {k ∈ I | k + 1 /∈ I}. The number of rows

satisfying this condition is 2n−|I|, which is equal to c
II

; therefore, column I must

have ones in all of the remaining 2n−|I| rows.

This uniquely determines column I of M , and the formula in the preceding para-

graph shows that this column is equal to the corresponding column of the matrix E

described previously. See figure 2.4 for an example when n = 4.

Case I = {k}: In this case, we partition the rows R of M into sets, according

to the value of the set R ∩ {1, . . . , k − 1}. We will show that, within each group of

rows, the column I has ones in exactly half of the rows. Since the rows of M within
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1 2 4 124
∅ 0 0 0 ·
3 0 0 0 ·
1 1 0 0 0
13 1 0 0 0
2 0 1 0 ·
23 0 1 0 ·
12 1 1 0 0
123 1 1 0 0
4 0 0 1 ·
34 0 0 1 ·
14 1 0 1 0
134 1 0 1 0
24 0 1 1 ·
234 0 1 1 ·
124 1 1 1 0
1234 1 1 1 0

c{1},{1,2,4} = 0

1 2 4 124
∅ 0 0 0 0
3 0 0 0 0
1 1 0 0 0
13 1 0 0 0
2 0 1 0 ·
23 0 1 0 ·
12 1 1 0 0
123 1 1 0 0
4 0 0 1 0
34 0 0 1 0
14 1 0 1 0
134 1 0 1 0
24 0 1 1 ·
234 0 1 1 ·
124 1 1 1 0
1234 1 1 1 0

c{2},{1,2,4} = 2

1 2 4 124
∅ 0 0 0 0
3 0 0 0 0
1 1 0 0 0
13 1 0 0 0
2 0 1 0 ·
23 0 1 0 ·
12 1 1 0 0
123 1 1 0 0
4 0 0 1 0
34 0 0 1 0
14 1 0 1 0
134 1 0 1 0
24 0 1 1 0
234 0 1 1 0
124 1 1 1 0
1234 1 1 1 0

c{4},{1,2,4} = 0

Figure 2.4: Determining column {1, 2, 4} of the decomposition matrix of SL(2, 24).
The Cartan invariants shown force zeros in all but two rows.

each partition are equal for the columns that have been determined so far, we will

make an arbitrary choice for which rows have zeros and which have ones within each

group. The key observation for this strategy is:

Lemma 8. Let k ∈ N . If J < {k}, then there is a unique R ⊆ {1, . . . , k − 1} such

that R ≺ J , but R ⊀ K for any J < K < {k}.

Proof. Consider the set R = Final(J) ∪ {i /∈ J | i < k and i + 1 ∈ J}. Clearly,

R ∩ J = Final(J), so R ≺ J . If J < K < {k}, then there is a unique largest element

s in the symmetric difference of J and K. Since J < K, we must have s /∈ J and

s ∈ K. If s + 1 ∈ J , then s ∈ R; but then we also have s + 1 ∈ K, so we conclude

that R ⊀ K. On the other hand, if s + 1 /∈ J , then s /∈ R; but now s + 1 /∈ K, and

we again conclude that R ⊀ K. This shows that there exists an R with the given

properties.
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To show uniqueness, let R 6= R′ ⊆ {1, . . . , k − 1}. If R′ ≺ J , then R′ ∩ J =

Final(J). Let s be the largest element of the symmetric difference of R and R′, so

s /∈ J . Let K = (J ∩ {s + 1, . . . , k − 1}) ∪ {s}. Since s /∈ J , we have J < K < {k}.
Furthermore, s + 1 ∈ K iff s + 1 ∈ J iff (by definition of R) s ∈ R iff s /∈ R′, which

implies that R′ ≺ K. Therefore R′ cannot also satisfy the conditions of the lemma,

which shows that R is unique.

It follows from the lemma that the columns J of the matrix M with J < I = {k}
have a triangular structure. Within these columns, the previously determined entries

in row R depend only on R ∩ {1, . . . , k − 1}. As we move backwards through the

ordering on columns from {1, . . . , k − 1} to ∅, each new column has ones in exactly

one additional group of rows. (Figure 2.5 depicts this structure for the case n = 4,

k = 4.) This triangular structure allows us to reason as follows: for each group of

rows, there is an integer linear combination of various columns J < {k} which has

ones only in that group of rows. If we calculate the corresponding linear combination

of Cartan invariants c
J{k} , we obtain the number of ones in column {k} which are

in the given group of rows. But we already know one matrix, E, which satisfies the

conditions of the theorem; so instead of actually calculating this linear combination

of Cartan invariants, we can simply look at column {k} of E to see what the number

of ones in this group of rows must be. Each group of rows contains an equal number

of rows containing k and not containing k, so examination of E tells us that column

{k} of M must have half ones and half zeros in each group of rows.

Since the rows within each group are identical so far, the choice of which rows

have zeros in column {k} and which have ones is arbitrary, and the resulting (partially

determined) matrices will be equal under a permutation of rows. Since each group

consists of an equal number of rows containing k and rows not containing k, we choose

to place ones in rows containing k and zeros elsewhere. Note that this choice agrees

with the matrix E previously described.

This completes the proof of the main theorem.
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M ∅ 1 2 12 3 13 23 123 4
3 1 · · · 1 · 1 1 ·
34 1 · · · 1 · 1 1 1
13 1 1 · · 1 1 1 · ·
134 1 1 · · 1 1 1 · 1
123 1 1 1 · 1 1 · · ·
1234 1 1 1 · 1 1 · · 1
23 1 · 1 1 1 · · · ·
234 1 · 1 1 1 · · · 1
2 1 · 1 1 · · · · ·
24 1 · 1 1 · · · · 1
12 1 1 1 · · · · · ·
124 1 1 1 · · · · · 1
1 1 1 · · · · · · ·
14 1 1 · · · · · · 1
∅ 1 · · · · · · · ·
4 1 · · · · · · · 1

Figure 2.5: Determining column {4} of the decomposition matrix of SL(2, 24).

2.5 Observations

2.5.1 Labeling the Characters of G

As a consequence of the main theorem, the rows of the decomposition matrix, and

hence the simple CG-modules, can be labeled with subsets of N in a combinatorially

meaningful way. However, we caution the reader that these labels are not defined in

a unique way, because the Brauer character table of G is not uniquely defined. Even

so, some of the information about these labels is still available in the character table

of G. Let χ
I

denote the character labeled by the subset I. If subsets I and J are

cyclic permutations of each other, then it is clear that the characters χ
I

and χ
J

are

algebraically conjugate via a lift of the Frobenius automorphism from roots of unity

in k× to roots of unity in C×. Also, the parity of I is easily recovered from χ
I
:
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Proposition 9.

χ
I
(1) =


2n + (−1)|I| if I ⊆ N and I 6= ∅,

1 if I = ∅, and

2n if I = St.

Proof. Clearly, χ∅ is the trivial character and χ
St

is the Steinberg character, so their

degrees are as indicated. If I is a nonempty subset of N , then we calculate the degree

of χ
I

modulo four as:

χ
I
(1) =

∑
J
I≺J

2|J | = 1 +
∑
j∈I

2 = 1 + 2|I|.

Since every nontrivial character of G has degree 2n − 1, 2n, or 2n + 1, we conclude

that the degree must be 2n + 1 if |I| is even, and 2n − 1 if |I| is odd.

Finally, we note that the only subsets I ⊆ N which are fixed under cyclic permuta-

tions of N are ∅ and N ; thus, G has at most three rational integer valued characters:

χ∅ = 1G, χ
N

, and, of course, the Steinberg character χ
St

.

2.5.2 Lifting the Zero-One Hypothesis

We briefly indicate an alternative proof of the main theorem which eliminates the

zero-one hypothesis. However, in removing this hypothesis, we must use more data

from the Cartan matrix to obtain our result. In the next chapter, we will make use of

the fact that we were able to prove the main theorem only using the Cartan entries

c
IJ

with min(|I|, |J |) ≤ 1, so this alternative proof is somewhat less desirable.

Since the combinatorics is conceptually easy but notationally difficult to describe,

we indicate the idea of the proof for the case n = 3; as we will see, the general case

is completely analogous. We begin by writing the matrix E with rows and columns

in the same order as in figure 2.5, ignoring the block corresponding to the Steinberg
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representation:

E ∅ 1 2 12 3 13 23

2 1 · 1 1 · · ·
23 1 · 1 1 1 · ·
12 1 1 1 · · 1 ·
123 1 1 1 · 1 · ·
1 1 1 · · · 1 ·
13 1 1 · · 1 · 1

∅ 1 · · · · · ·
3 1 · · · 1 · 1

We will deduce the entries of E, using only Cartan invariants. In light of the

discussion earlier in this chapter, it suffices to show that column ∅ consists entirely

of ones, because this implies that the entire matrix has no entry greater than one. At

that point, we can invoke the prior proof of the main theorem.

We work backwards through the columns, starting at column 12. Whenever we

have an arbitrary choice for which entries of E have zeros or ones, we will always

choose so that our partially completed matrix agrees with E. Since c12,12 = 2,

column 12 has two ones, which we place in rows 2 and 23. c2,12 = 2, so the entries

in column 2 in those rows must either be two ones, or a two and a zero. However,

c2,13 = 1 and c12,13 = 0, so column 2 must have a nonzero entry (in fact, a one) in

some row other than rows 2 and 23. Since c2,2 = 4, we conclude that column 2 must

not have a two. Thus, column 2 has ones in rows 2 and 23, and in two more new

rows, i.e. rows 12 and 123.

Next, we deal with column 1. c1,12 = 0 and c1,2 = 2, so column 1 has zeros in

rows 2 and 23, and either two ones or a zero and a two in rows 12 and 123. But

c1,23 = 1, and column 23 has no ones in common with any column that has already

been determined; so column 1 must have at least one additional one in some new row.

Since c1,1 = 4, we conclude that column 1 must not have a two, and we can fill it in

as indicated.

Finally, we show that column ∅ has no entry larger than one. c∅,12 = 2, so

column ∅ has either two ones or a two and a zero in rows 2 and 23. c∅,2 = 4, so,
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having accounted for rows 2 and 23, we see that rows 12 and 123 must also have

either two ones or a two and a zero. Similarly, examining c∅,1 shows that there are

either two ones or a two and a zero in rows 1 and 13. If there is a two in any of

these rows, then column ∅ must have zeros in rows ∅ and 3, because c∅,∅ = 8. But

c∅,23 = 2 (in general, c∅,{2,3,...,n} = 2), and this column is easily seen to have zeros

in every row except possibly rows 1, 13, ∅, and 3 (generally, rows 1, 1n, ∅, and n)

by calculating Cartan invariants with columns that have already been determined.

Therefore, if column ∅ has zeros in rows ∅ and 3, then there must be a two in either

row 1 or row 13. This must be the only two in column ∅, because c∅,∅ = 8, and any

additional two would force this Cartan invariant to exceed 8.

Now we examine column 13 (generally, column {1, 3, 4, . . . , n}). This column has

two ones, and by examining Cartan invariants with already determined columns, these

ones must be distributed as follows: one between rows 12 and 123 (generally, 12 and

12n), and one between rows 1 and 13 (generally, rows 1 and 1n). In rows 12 and 123,

column ∅ has ones; in rows 1 and 13, column ∅ has a zero and a two. Therefore,

we must have c∅,13 = 1 or 3; but c∅,13 = 2, a contradiction. Therefore column ∅
consists entirely of ones, and we proceed as indicated with the previous proof.

Finally, note that this proof is possible only if n ≥ 3; for instance, we made use of

column {1, 3, 4, . . . , n} (which is different from column 1). In fact, the result is false

if n = 2, in which case there is another nonnegative integer matrix F with F F = C,

namely

F =


2 1 1 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
Of course, this matrix can’t be the decomposition matrix, since it is square.

2.5.3 Submatrices of D

In this section, we explain how certain submatrices of D are (almost) equal to decom-

position matrices of SL(2, 2k) for k ≤ n/2. Since we will be dealing with decompo-
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sition matrices of G for different n, we will write D(n) for the decomposition matrix

of Gn = SL(2, 2n).

Definition 10. A subset I ( N is dense if i /∈ I implies i+ 1 ∈ I.

Clearly, if I is dense, then |I| ≥ n/2, and c
II
≤ 2n/2. For each I which is dense,

we will identify a subset of the rows and columns of D(n) such that the submatrix

of D(n) corresponding to these rows and columns is (almost) equal to D(k), where

k = n− |I|. Choosing the columns involves a little effort:

Definition 11. If I is dense, and S ⊆ N \I, then define the subset A(I, S) as follows:

A(I, S) = S ∪ {j ∈ N | For some k, {j, j + 1, . . . , k} ⊆ I, k + 1 /∈ I, and k + 1 /∈ S}.

We note that since S can be any subset of the complement of I, there are 2n−|I|

sets A(I, S). These are the columns of the submatrix of D(n) corresponding to I;

the rows are simply the 2n−|I| rows which respect I. For example, if n = 7 and I =

{1, 2, 3, 5, 6}, then we have A(I,∅) = I, A(I, {4}) = {4, 5, 6}, A(I, {7}) = {1, 2, 3, 7},
and A(I, {4, 7}) = {4, 7}. The sets respecting I are {3, 6}, {3, 4, 6}, {3, 6, 7}, and

{3, 4, 6, 7}; the corresponding submatrix is:

D(7) 12356 456 1237 47

36 1 1 1 0

346 1 0 1 0

367 1 1 0 0

3467 1 0 0 1

which is almost D(2). In order to make this matrix equal D(2) exactly, we would

have to move the one in column 47 into a row of its own. With this one minor change,

all matrices obtained in this way are equal to D(k), where k = n− |I|.
To see that this always happens, let N \ I = {g1, g2, . . . , gk}, and let S ⊆ N \ I.

Suppose we examine the column of D(n) labeled A(I, S). Among those rows R which

respect I (i.e., the rows satisfying R ∩ I = Final(I)), the rows which also respect
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D ∅ 234 1 134 2 124 3 123 4 14 23 13 24 12 34 1234
∅ 1 · · · · · · · · · · · · · · ·
4 1 1 0 · · · · · 1 · · · · · 1 ·
14 1 1 1 · · · · · 1 · · · · · 1 ·
1 1 · 1 1 0 · · · · 1 · · · · · ·
12 1 · 1 1 1 · · · · 1 · · · · · ·
2 1 · · · 1 1 0 · · · · · · 1 · ·
23 1 · · · 1 1 1 · · · · · · 1 · ·
3 1 · · · · · 1 1 0 · 1 · · · · ·
34 1 · · · · · 1 1 1 · 1 · · · · ·
13 1 · 1 · · · 1 · · 1 1 1 0 · · ·
123 1 · 1 · 1 · 1 · · 1 0 1 0 · · ·
134 1 · 1 · · · 1 · 1 0 1 1 0 · · ·
1234 1 · 1 · 1 · 1 · 1 0 0 1 1 0 0 ·
234 1 · · · 1 · 1 · 1 · · 0 1 1 0 ·
124 1 · 1 · 1 · · · 1 · · 0 1 0 1 ·
24 1 · · · 1 · · · 1 · · 0 1 1 1 ·
St · · · · · · · · · · · · · · · 1

Figure 2.6: The decomposition matrix of SL(2, 24) with each submatrix indicated.
Dots are zero entries.

A(I, S) are those for which (1) whenever gj ∈ S and gj+1 /∈ S, gj /∈ R, and (2)

whenever gj ∈ S and gj+1 ∈ S, gj ∈ R. From this, we can conclude that the binary

relation which determines whether an entry in this submatrix of D(n) is a zero or

a one is essentially identical to the relation ≺, but with each row replaced by its

complement.

It is unclear if these submatrices simply appear because of the elementary com-

binatorial nature of the relation ≺, or if this structure is somehow also reflected in

the algebra kG. Figure 2.6 shows all such submatrices when n = 4. Note that, in

general, the rows and columns spanned by these submatrices are almost disjoint. The

overlapping submatrices in the figure only occur when n is even, and only for the

submatrices corresponding to the two dense subsets of minimal weight.
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2.5.4 A Geometric Interpretation of C and D

We finish this discussion by noting that the results of this chapter have a geometric

interpretation. In particular, there is an arrangement An of n-dimensional unit cubes

in Rn with the following properties:

• Each cube corresponds to a unique proper subset I ( N ,

• Each Cartan invariant can be calculated by counting the number of certain

vertices that the two corresponding cubes share, and

• The decomposition matrix is the incidence matrix of those certain vertices with

the set of cubes.

This geometric interpretation is a preview of the viewpoint we will take in the follow-

ing chapter.

Specifically, to I ( N , we associate the unit cube centered at the integer lattice

point x = (x1, . . . , xn), where:

xi =


0 if i /∈ I

1 if i ∈ I and i+ 1 /∈ I

−1 if i ∈ I and i+ 1 ∈ I.

Vertices of the cubes are all at half-integer lattice points. We call a half-integer lattice

point y relevant if yi = ±1/2 for all i. Thus, the relevant vertices are exactly the

vertices of the cube corresponding to ∅. We will call this arrangement of labeled

cubes and relevant vertices An.

Proposition 12. The Cartan invariant c
IJ

is equal to the number of relevant vertices

that the cubes associated to I and J share.

Proof. For I ( N , the relevant vertices of the cube labeled I are simply the relevant

vertices satisfying the equations {xi = 1 | i ∈ I, i+1 /∈ I}∪{xi = −1 | i ∈ I, i+1 ∈ I}.
So, clearly, the number of relevant vertices of the cube labeled I is 2n−|I|. Taking

the union of the corresponding sets of equations for the cubes labeled I and J , we see
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that there are two possibilities: first, that an equation for I (resp. J) requires that

xi = 1, and an equation for J (resp. I) requires that xi = −1. In this case, the cubes

share no relevant vertices. Moreover, it must be the case that the i-th coordinate of

one cube’s center is 1, and the other is -1. This can only happen if i ∈ I ∩ J , but

i+ 1 ∈ I or J , but not both; in other words, only if I � J .

The second possibility is that there is no such inconsistency in the sets of equations

defining the relevant vertices for the cubes I and J . In this case, the number of

relevant vertices shared by cubes I and J is 2n−|I∪J |, since we clearly must take the

union of the two sets of equations. Moreover, this implies that whenever the i-th

coordinate of the center of cube I is 1 (resp. -1), the corresponding coordinate of the

center of cube J is not -1 (resp. 1). Checking the formula for the centers of cubes,

we see that this is equivalent to I ∼ J .

Proposition 13. The incidence matrix with rows indexed by relevant vertices and

columns indexed by cubes is equal to the decomposition matrix of G in the principal

block.

Proof. Clearly, the inner product of columns I and J of the incidence matrix gives

the number of relevant vertices shared by cubes I and J . Since this incidence matrix

is a zero-one matrix with no zero row, the conclusion follows from the main theorem

of the chapter.



CHAPTER 3

ODD CHARACTERISTIC

When p is odd, there is no simplification of the set {1, . . . , p}n which parametrizes the

simple kG-modules. Even so, some of the results in this chapter can be thought of as

a generalization of the combinatorics of subsets of N which played a key role in the

previous chapter. We continue with the convention that arithmetic in N = {1, . . . , n}
is thought of as happening in Z/nZ. However, when we do arithmetic on elements of

{1, . . . , p}, we will think of the operations as taking place in Z.1

3.1 The Cartan Matrix

In [4], Cheng describes the Cartan invariants of G = SL(2, q) in defining character-

istic. This result is surprisingly concise, given the previous descriptions in [6] and

[13], which, as Cheng notes, are “so complicated that there is little hope of gen-

eralizing them to other groups of Lie type.” Cheng’s result is phrased in terms of

products of certain matrices, but we will find it more convenient to restate the result

in combinatorial terms.

We begin with a definition that extends the notion of compatibility to odd primes.

Definition 14. Let J,K ∈ {1, . . . , p}n. Then J is associated to K via A ⊆ N if

Ki =



Ji if i /∈ A and i+ 1 /∈ A

Ji ± 1 if i ∈ A and i+ 1 /∈ A

p− Ji if i /∈ A and i+ 1 ∈ A

p− Ji ± 1 if i ∈ A and i+ 1 ∈ A.

1. Technically, this is an ambiguous convention, since 1 (say) is an element of both
sets, and (worse) we may very well have n = p. We trust the reader to make the proper
distinction from context.

24
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We will write J →
A
K when J is associated to K via A. 2

Note that it is possible for a given J to be associated to more than one K via the

same set A. For instance, if q = 74, then (1, 1, 1, 1) is associated to both (1, 6, 5, 2)

and (1, 6, 7, 2) via A = {3, 4}. In addition, J might be associated to K via more than

one subset A; for instance, (3, 4, 3, 4) is associated to (3, 3, 4, 4) via A = {3}, and via

A = {1, 2, 4}. Fortunately, we can put strong restrictions on the latter occurance:

Proposition 15. J is associated to K via at most two different subsets A. If there

are two, then J,K ∈ {p−1
2 , p+1

2 }
n, and the two subsets are complements of each

other.

Proof. Suppose that J is associated to K via two distinct sets A1 and A2. Since the

definition is invariant under a cyclic permutation of N , we may assume without loss

of generality that 1 ∈ A1 and 1 /∈ A2. Therefore, when J is associated to K via A1,

we have K1 = J1 ± 1 or K1 = p − J1 ± 1, and when J is associated to K via A2,

K1 = J1 or K1 = p − J1. Since the equalities J1 ± 1 = J1 and p − J1 ± 1 = p − J1

are clearly impossible, we must have K1 = J1 ± 1 = p− J1 or K1 = p− J1 ± 1 = J1.

In the first case, we have 2 /∈ A1 and 2 ∈ A2, and in the second, 2 ∈ A1 and 2 /∈ A2.

Repeating this argument n times, we see that A1 and A2 are complements of each

other.

Furthermore, induction shows that for all i ∈ N , Ji ± 1 = p − Ji, which implies

that Ji = p±1
2 . We also have that Ki = p − Ji or Ki = Ji for each i, which shows

that Ki = p±1
2 as well. Finally, inspection of the above argument shows that the sets

J and K uniquely determine A1 and A2, which precludes the possibility of a third

subset A3 via which J is associated to K. This proves the proposition.

Note that not all J,K ∈ {p±1
2 }

n are associated to each other. For instance, if

n = 2, then (p−1
2 , p−1

2 ) is not associated to (p−1
2 , p+1

2 ). Indeed, the simple modules

corresponding to these two labels are in different blocks.

2. It is perhaps worth noting that J →
A
K if and only if K →

A
J ; however, we will make

no use of this fact, and therefore leave it as an exercise to the reader.
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Now we are ready to state a modified version of Cheng’s result on the Cartan

invariants of G, which we will prove equivalent to Cheng’s original result momentarily.

If either J or K is (p, . . . , p), then one of the corresponding modules is the Steinberg

module, and we require that c
JK

= δ
JK

. Otherwise,

c
JK

=
∑
J→
A
K

2n−#{ i∈N | i∈A or Ji=p }.

For instance, if q = 76, J = (1, 5, 7, 2, 6, 7), and K = (6, 1, 6, 5, 7, 7), then there is

exactly one A for which J →
A
K, namely A = {2, 3, 5}. Since J3 = 7 and J6 = 7, the

cardinality of {i ∈ N | i ∈ A or Ji = p} is four, and we have that c
JK

= 26−4 = 4.

Corollary 16. Every Cartan invariant of G is either zero, 2k, or 2k + 2n−k for some

1 ≤ k ≤ n.

Proof. This is an easy consequence of the above proposition. We have J →
A
K for

exactly zero, one, or two sets A. If zero, then c
JK

= 0; if one, then c
JK

is a power of

two; and if there are two such A, then J,K ∈ {p±1
2 }. This implies that no Ji = p, so

we have c
JK

= 2n−|A1| + 2n−|A2|. Since A1 and A2 are complements of each other,

the corollary follows.

Finally, we must prove that this description of the Cartan invariants is equivalent

to Cheng’s original result in [4]. Let ρi be the Brauer character of Vi, with the

convention that ρi = 0 if i < 1 or i > p.3 Note that Cheng numbers the simple

modules differently; the results quoted here take this difference into account. Define

the following matrices over Z[IBr(G)]:

Aj =

(
2ρj ρp−j

2ρj−1 + 2ρj+1 ρp−j−1 + ρp−j+1

)
if 1 ≤ j < p,

Ap =

(
ρp 0

ρp−1 ρ1

)
.

3. Recall that Vi is the simple module of dimension i obtained by letting G act on
homogeneous bivariate polynomials of degree i− 1.
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Theorem 3.1 of [4] gives a formula for the projective character η
J

of PJ . As long as

J 6= (p, . . . , p), the theorem states:

η
J

= tr
n∏
i=1

(AJi)
σi−1 .

We begin by rephrasing the definition of the matrices Aj . Define functions X and

Y on Z[IBr(G)] by letting X(ρj) = ρp−j and Y (ρj) = ρj−1 + ρj+1, and by requiring

that X and Y are linear and commute with the Frobenius automorphism σ. We will

also need to use the composite map of X and Y . Note that X and Y almost commute;

X ◦ Y and Y ◦X agree on ρj when 2 ≤ j ≤ p− 1, but we have:

X ◦ Y (ρ1) = ρp−2 X ◦ Y (ρp) = ρ1

Y ◦X(ρ1) = ρp−2 + ρp Y ◦X(ρp) = 0.

Both of these irregularities result from the convention that ρ0 = 0. Rather than fixing

this by using some unusual convention with the symbol ρ0, we will simply define a

third map XY . Let XY = X ◦ Y = Y ◦ X on ρj , 2 ≤ j ≤ p − 1, and define

XY (ρ1) = ρp−2 + ρp and XY (ρp) = ρ1.

Next, let Xi, Yi, and XYi be the functions which equal X, Y , and XY , respec-

tively, on ρσ
i

j , and are the identity on all other Frobenius twists of the ρj . Thus,

X = X0 ◦ · · · ◦Xn−1. For consistency, we will require that Xσ
i = Xi+1, and similarly

for the Yi and XYi. Also let ψ(j) = 2 if 1 ≤ j ≤ p − 1, and ψ(p) = 1. With these

definitions, we can rewrite the matrices Aj as:

Aj =

(
ψ(j) · ρj X0(ρj)

ψ(j) · Y0(ρj) XY0(ρj)

)
.

We require one more family of functions on Z[IBr(G)]. Define Zi as:

Zi(ρJ1
ρσ
J2
. . . ρσ

n−1
Jn

) =
∑

A⊆{1,...,i}

2i−#{1≤k≤i | k∈A or Jk=p}

⊙
k∈A

Xk−1 ◦ Yk





28

where � behaves like function composition, except for the requirement that Xk�Yk =

XYk. Note that Z0 = 1.

As an example, suppose n ≥ 3. As long as no Jk = p, we have Z2 = 4 + 2X0 ◦
Y1 + 2X1 ◦ Y2 + X0 ◦XY1 ◦ Y2, and if p = 7 (switching back from Cheng’s notation

to ours), Z2(ρ1 · ρσ2 · ρ
σ2
3 ) = Z2(1, 2, 3) = 4 · (1, 2, 3) + 2 · (6, 1, 3) + 2 · (6, 3, 3) + 2 ·

(1, 5, 2) + 2 · (1, 5, 4) + (6, 4, 3) + (6, 4, 5) + (6, 6, 3) + (6, 6, 5).

Note that our description of the Cartan invariants is equivalent to saying that

Zn(J) is the character of the projective cover of VJ ; this is simply a matter of verifying

that the compositions Xk−1 ◦ Yk above correspond to the formulas in definition 14.

Thus, to show the equivalence of Cheng’s description of the Cartan invariants with

ours, we must show that Zn(J) = η
J

.

To this end, we prove by induction on i that:

i∏
k=1

(AJk)σ
k−1

=

(
ψ(Ji) · Zi−1(J) Xi−1 � Zi−1(J)

ψ(Ji) · Y0 � Zi−1(J) Xi−1 � Y0 � Zi−1(J)

)

where, for convenience, J = (J1, . . . , Jk) = ρ
J1
ρσ
J2
. . . ρσ

k−1
Jk

.

If i = 1, this simply states that

AJ1 =

 ψ(J1) · ρ
J1

X0(ρ
J1

)

ψ(J1) · Y0(ρ
J1

) XY0(ρ
J1

)

 ,

which is true. Now, we calculate:

i+1∏
k=1

(AJk)σ
k−1

=

(
i∏

k=1

(AJk)σ
k−1
)

(AJi+1
)σ
i

=

(
ψ(Ji)Zi−1(J) Xi−1 � Zi−1(J)

ψ(Ji)Y0 � Zi−1(J) Xi−1 � Y0 � Zi−1(J)

) ψ(Ji+1)ρ
Ji+1

X0(ρ
Ji+1

)

ψ(Ji+1)Y0(ρ
Ji+1

) XY0(ρ
Ji+1

)

σi

=

(
ψ(Ji)Zi−1(J) Xi−1 � Zi−1(J)

ψ(Ji)Y0 � Zi−1(J) Xi−1 � Y0 � Zi−1(J)

) ψ(Ji+1)ρσ
i

Ji+1
Xi(ρ

σi

Ji+1
)

ψ(Ji+1)Yi(ρ
σi

Ji+1
) XYi(ρ

σi

Ji+1
)


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=

(
ψ(Ji)ψ(Ji+1)Zi−1(J) · ρ+ ψ(Ji+1)Xi−1 � Zi−1(J) · Yi(ρ)

ψ(Ji)ψ(Ji+1)Y0 � Zi−1(J) · ρ+ ψ(Ji+1)Xi−1 � Y0 � Zi−1(J) · Yi(ρ)

ψ(Ji)Zi−1(J) ·Xi(ρ) +Xi−1 � Zi−1(J) ·XYi(ρ)

ψ(Ji)Y0 � Zi−1(J) ·Xi(ρ) +Xi−1 � Y0 � Zi−1(J) ·XYi(ρ)

)
,

where ρ = ρσ
i

Ji+1
. Now observe that ψ(Ji)Zi−1(J) · ρ + Xi−1 � Zi−1(J) · Y0(ρ) =

Zi(J, ρ), so

· · · =

(
ψ(Ji+1)Zi(J, ρ) Xi � Zi(J, ρ)

ψ(Ji+1)Y0 � Zi(J, ρ) Xi � Y0 � Zi(J, ρ)

)
,

completing the induction.

Therefore,

η
J

= tr
n∏
i=1

(AJi)
σi−1 = tr

(
ψ(Jn) · Zn−1(J) Xn−1 � Zn−1(J)

ψ(Jn) · Y0 � Zn−1(J) Xn−1 � Y0 � Zn−1(J)

)
= ψ(Jn) · Zn−1(J) +Xn−1 � Y0 � Zn−1(J) = Zn(J).

This completes the proof.

3.2 A Geometric Description of the Cartan Matrix

The above description of the Cartan matrix can be rephrased in geometric terms.

To each label J ∈ {1, . . . , p}n, we will associate a unit n-cube, such that the Cartan

invariant c
JK

can be calculated by counting the number of vertices that the cubes J

and K share. This idea is analogous to the geometric interpretation obtained in the

previous chapter for p = 2.

Begin by dividing Rn into unit n-cubes with corners at integer lattice points.

Assign a label in the set Zn to each cube according to the following rule: if a cube

is centered at the half-integer lattice point x = (x1, . . . , xn), assign the label J =

(J1, . . . , Jn), where

Ji =
p

2
+ (−1)bxi+1cxi.
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Next, discard all cubes except for those with labels in the set {1, . . . , p}n. Also discard

any cube labeled (p, . . . , p), which is the label of the Steinberg module. We will call

this arrangement of labeled cubes in Rn the even arrangement.

We wish to define another arrangement of cubes in Rn, the odd arrangement,

which is identically labeled with the exception that

Jn =
p

2
− (−1)bx1cxn.

The even and odd arrangements will give the Cartan invariants of the two blocks of

kG of positive defect; thus, a complete combinatorial picture of the Cartan invariants

will involve the disjoint union of two copies of Rn. For convenience, we define ε(i) = 1,

unless i = n and we are in the odd arrangement, in which case ε(i) = −1. With this

notation, we have

Ji =
p

2
+ ε(i)(−1)bxi+1cxi

for all i, and for either arrangement.

We will call a cube interior if its label J lies in the set {1, . . . , p − 1}n, and

boundary otherwise. From the formulas for a cube’s label, we can see that a cube

centered at x is interior if and only if −p−2
2 ≤ xi ≤ p−2

2 for all i ∈ N , and so the set

of all interior cubes forms one large cube centered at the origin. A cube is central if

xi = ±1/2 for all i, or, equivalently, if the cube has the origin as a vertex.

Call a vertex y = (y1, . . . , yn) of a cube relevant if −p−1
2 ≤ yi ≤ p−1

2 for all i.

Thus, a vertex is relevant if and only if it is a vertex of some interior cube. Figure

3.1 shows the even and odd arrangements when p = 5, n = 2. Each cube is labeled

appropriately, and the relevant vertices are shown as dots.

As one can see, there is some duplication in the labeling of the cubes. If we wish

to put cubes in bijective correspondence with simple modules, we must compensate

for this.

Proposition 17. In either arrangement, the cube centered at x = (x1, . . . , xn) has

the same label as the cube centered at −x = (−x1, . . . ,−xn). If a label appears in

an arrangement, then it appears exactly twice.
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11 24 31 44

42 33 22 13

13 22 33 42

44 31 24 11

35 15

53

51

15 35

51

53

14 21 34 41

43 32 23 12

12 23 32 43

41 34 21 14

45 25

52

54

25 45

54

52

Figure 3.1: The even and odd arrangements for q = 25

Proof. If xi+1 is not an integer, then the parities of bxi+1c and b−xi+1c are always op-

posite. Thus, (−1)b−xi+1c = −(−1)bxi+1c, and so (−1)b−xi+1c(−xi) = (−1)bxi+1cxi.

Thus, the cubes centered at x and −x have the same labels.

Suppose the labels assigned to the cubes centered at x = (x1, . . . , xn) and y =

(y1, . . . , yn) are equal, i.e. that (−1)bxi+1cxi = (−1)byi+1cyi. If x 6= y, then we may

assume without loss of generality that x1 6= y1. But (−1)bx2cx1 = (−1)by2cy1, so we

conclude that x1 = −y1, and that the parities of bx2c and by2c differ. But this implies

that x2 6= y2, and therefore we may repeat the argument to show that x2 = −y2. By

induction, x = −y, and therefore no other cube shares this label. This proves the

proposition.

Let Rn/{±1} be the topological space Rn/ ∼, where x ∼ y iff x = ±y. It is an

immediate consequence of the proposition that the label of a cube in the quotient

space Rn/{±1} is well-defined under the natural projection π : Rn → Rn/{±1}.
Furthermore, in the quotient space, each label is used at most once. From now on,

when we refer to the even or odd arrangement of cubes, we will mean the image of that

arrangement in the quotient space Rn/{±1}. Whenever we refer to the “coordinates

of the center of a cube labeled J” or the “coordinates of a relevant vertex”, we will

understand that these coordinates are only well-defined up to a choice of sign.
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Now we are ready for the crucial observation which links these arrangements of

cubes to the Cartan invariants of G:

Proposition 18. Let J and K be labels of cubes which are in the same arrangement,

and let x and y be the coordinates of the centers of the cubes labeled J and K,

respectively. Then:

J →
A
K ⇐⇒ yi =

xi if i /∈ A

xi ± 1 if i ∈ A.

Proof. (⇐) We have four cases, depending on whether i and i + 1 are in A. In each

case, the corresponding conditions on yi and yi+1 give the correct formula for Ki : yi = xi

yi+1 = xi+1

⇒ (−1)byi+1cyi =(−1)bxi+1cxi ⇒ Ki = Ji yi = xi ± 1

yi+1 = xi+1

⇒ (−1)byi+1cyi =(−1)bxi+1cxi ± 1 ⇒ Ki = Ji ± 1

 yi = xi

yi+1 = xi+1 ± 1

⇒ (−1)byi+1cyi =− (−1)bxi+1cxi ⇒ Ki = p− Ji yi = xi ± 1

yi+1 = xi+1 ± 1

⇒ (−1)byi+1cyi =− (−1)bxi+1cxi ± 1 ⇒ Ki = p− Ji ± 1.

(⇒) Working in this direction, we must be more careful about the sign ambiguity

in choosing the coordinates of the centers of the cubes labeled J and K. Suppose

we fix the coordinates x of one of the two cubes labeled J . If 1 /∈ A, we choose the

coordinates y of the cube labeled K so that bx1c and by1c have equal parities, and

if 1 ∈ A, we choose y so that bx1c and by1c have opposite parities. This is always

possible, because bac and b−ac have opposite parities when a is a half-integer.

Suppose first that 1 /∈ A. If we also have 2 /∈ A, then (−1)by2cy1 = (−1)bx2cx1,

which implies that y1 = ±x1. But bx1c and by1c have equal parities, so we must

have y1 = x1 as claimed. Moreover, this implies that bx2c and by2c have equal
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parities. If, on the other hand, we have 2 ∈ A, then (−1)by2cy1 = −(−1)bx2cx1,

which again implies that y1 = x1. However, we now have that bx2c and by2c have

opposite parities.

Now suppose that 1 ∈ A. If we have 2 /∈ A, then (−1)by2cy1 = (−1)bx2cx1 ± 1,

which implies that y1 = ±x1 ± 1. But bx1c and by1c have opposite parities, so it

must be the case that y1 = x1 ± 1 as claimed. Moreover, this implies that bx2c and

by2c have equal parities. If, on the other hand, we have 2 ∈ A, then (−1)by2cy1 =

−(−1)bx2cx1 ± 1, which again implies that y1 = x1 ± 1. However, we now have that

bx2c and by2c have opposite parities.

Thus, we see that if 2 /∈ A, then bx2c and by2c have equal parities, and if 2 ∈ A,

bx2c and by2c have opposite parities. Therefore, we may repeat the argument to show

that y2 = x2 if 2 /∈ A, and y2 = x2 ± 1 if 2 ∈ A. Continuing in this way, we obtain

the desired conclusion.

We are now ready to give another description of the Cartan invariants of kG:

Proposition 19. Let J ∈ (1, . . . , p) be the label of a cube in either the even or odd

arrangement. If K ∈ (1, . . . , p) is another such label, then c
JK
6= 0 if and only if

the cube labeled J shares a vertex with a cube labeled K. In this case, the Cartan

invariant equals the number of relevant vertices that the corresponding cubes share,

with the understanding that the origin, if shared, is counted twice.4

Proof. Let x and y be the coordinates of the centers of the cubes labeled J and K,

respectively. If the cubes labeled J and K share no vertices, then we must have

yi /∈ {xi, xi ± 1} for some i. By the proposition, there does not exist an A ⊆ N with

J →
A
K, and therefore c

JK
= 0.

Now suppose the cubes labeled J andK share at least one vertex. For the moment,

suppose that at least one of the cubes is not central (below, we will deal with the case

4. It must be emphasized that the even and odd arrangements exist in the space
Rn/{±1}, and, therefore, the enumeration of relevant vertices shared by the cubes labeled
J and K also takes place in this space. Referring to figure 3.1, we see that the Cartan
invariant for (2, 2) and (3, 3) is four. The squares share three vertices: ±(1, 0), ±(0, 1), and
(0, 0), which is counted twice.
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where both cubes are central). Then there is exactly one A ⊆ N with J →
A
K, and,

by the proposition, the cubes must share 2n−|A| vertices. However, not all of these

shared vertices are necessarily relevant. Specifically, for each i with xi = yi = ±p2 ,

half of the shared vertices will be irrelevant. But if xi = ±p2 , then Ji = p
2 ±

p
2 = 0 or

p; since no cube has a zero in its label, Ji = p. Conversely, if Ji = p, then xi = ±p2 , in

which case yi also equals ±p2 if and only if i /∈ A (by the proposition). Therefore, to

compensate for the fact that the cubes labeled J and K may share irrelevant vertices,

we see that we must divide the number of shared vertices by two whenever there is

an i /∈ A such that Ji = p. Thus, c
JK

= 2n−|A|−#{i/∈A | Ji=p}, which is equivalent to

the formula in the previous section.

Finally, suppose that both cubes are central. Then every shared vertex is relevant;

however, there are now two subsets A1 and A2 via which J → K; furthermore, A1

and A2 are complements of each other. By the proposition, this implies that the

cube labeled J is adjacent to the cube labeled K in two different ways; once in the

coordinate directions in the set A1, and once in the coordinate directions in the set

A2. If we count the shared vertices resulting from each of these two adjacencies, we

obtain 2n−|A1|+2n−|A2| vertices, with the stated convention that the origin is counted

twice. (No other vertex is counted twice, because A1 and A2 are complements of each

other.) This number also agrees with the formula given in the previous section, which

completes the proof.

To show the value of this geometric interpretation, we prove a fact which is not

obvious from previous descriptions of the Cartan matrix:

Corollary 20. As p → ∞, the fraction of simple modules J satisfying c
JJ

= 2n

approaches 1.

Proof. If the cube labeled J is interior but not central, then the Cartan invariant is

as stated. Clearly, as p→∞, the fraction of cubes which are interior and noncentral

approaches 1.
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It is clear now that the even and odd arrangements correspond to the principal and

nonprincipal blocks of kG of positive defect; however, which arrangement corresponds

to which block is determined by an unexpected rule:

Proposition 21. If n is even, or p = 1 mod 4, then the even arrangement of cubes

gives the Cartan invariants of the principal block of kG, and the odd arrangement

gives the Cartan invariants of the nonprincipal block. If n is odd and p = 3 mod 4,

then the situation is reversed.

Proof. In the even arrangement, the cube centered at (1/2, . . . , 1/2) is labeled (p+1
2 ,

. . . , p+1
2 ). The total weight of this label is thus n · (p+1)

2 , which is even if n is even

or if p = 3 mod 4, and odd if n is odd and p = 1 mod 4. Moreover, the parity of the

trivial representation, (1, . . . , 1), is the same as the parity of n. Thus, if n is even,

then the even arrangement corresponds to the principal block, and if n is odd, then

the even arrangement corresponds to the principal block if p = 1 mod 4, and the

nonprincipal block if p = 3 mod 4.

3.3 Factoring the Cartan Matrix

Once again, we will follow the route indicated in the introduction, and prove com-

binatorially that the decomposition matrix of kG is essentially determined by the

Cartan matrix.

Main Theorem. There is a unique nonnegative integer matrix M , up to a permu-

tation of rows, such that:

1. Every entry is a zero or one,

2. Every row contains a nonzero entry, and

3. M M = C.

Clearly, the decomposition matrix of G satisfies the second and third conditions;

by work of Srinivasan [12], the decomposition numbers of SL(2, pn) are all zero or one
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when p is an odd prime. Therefore, an immediate consequence of the main theorem

is that the unique matrix M is, in fact, the decomposition matrix.

We next describe a matrix E which satisfies the three conditions of the theorem.

The columns of E are already labeled by the simple kG-modules. The rows of E

are labeled by the disjoint union of the relevant vertices of the even and the odd

arrangements, with one exception: for each arrangement, there are two rows of E

labeled by the origin. Note that the arrangements, and thus the relevant vertices,

are each taken to lie in the space Rn/{±1}. To this, we add one more row labeled

with the symbol St, which corresponds to the Steinberg module. Since each of the

arrangements has (pn−1)/2 relevant non-origin vertices, this gives us a total of pn+4

rows in the matrix E, which equals the number of ordinary characters of G.

The entries of E are all zero or one, according to the rules:

e
RJ

=



1 if R 6= St and vertex R belongs to the cube labeled J

0 if R 6= St and vertex R does not belong to the cube labeled J

1 if R = St and J = (p, . . . , p)

0 if R = St and J 6= (p, . . . , p).

Figure 3.2 shows the even and odd arrangements for SL(2, 9), with the Cartan and

decomposition matrices for each block.

Proposition 22. The matrix E satisfies conditions 1–3 of the theorem.

Proof. Clearly, E satisfies condition 1 of the theorem. Since each relevant vertex

belongs to at least one interior cube, condition 2 is also satisfied. Finally, if J and K

are (non-Steinberg) column labels of E, then the J , K entry of E E is the number

of rows which have a one in both column J and column K. By our definition of E,

this is the number of relevant vertices which belong to both the cube labeled J , and

the cube labeled K, with the convention that the origin is counted twice. Thus, E

satisfies all three conditions of the theorem.
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22

11

11

22

13

31

31

13
C 11 22 13 31
11 5 4 1 1
22 4 5 2 2
13 1 2 2 1
31 1 2 1 2

D 11 22 13 31
±(1,−1) 1 0 0 0
±(0, 1) 1 1 1 0
±(1, 1) 0 1 1 1
±(1, 0) 1 1 0 1
(0, 0) 1 1 0 0
(0, 0) 1 1 0 0

21 12

12 21

32

23

23

32

C 12 21 23 32
12 5 4 2 1
21 4 5 1 2
23 2 1 2 0
32 1 2 0 2

D 12 21 23 32
±(1,−1) 1 0 1 0
±(0, 1) 1 1 1 0
±(1, 1) 0 1 0 1
±(1, 0) 1 1 0 1
(0, 0) 1 1 0 0
(0, 0) 1 1 0 0

Figure 3.2: The principal and nonprincipal blocks of SL(2, 9)

3.4 Proof of the Main Theorem

Our strategy for proving the uniqueness of the matrix M is to “build up” M by rows,

using the argument from the previous chapter on each of the noncentral interior cubes.

(The central cubes provide additional difficulties, since these cubes are associated to

each other by more than one subset A ⊂ N .) Unfortunately, there are no noncentral

interior cubes when p = 3, which means we will need to construct an entirely different

argument for this case. With this in mind, we first deal with the case p ≥ 5.

The heart of the argument is the following proposition:

Proposition 23. Let J be an interior noncentral cube centered at x in the even or

odd arrangement. Then there exists an isometry f : Rn → Rn, with f(0) = x, which

maps the arrangement An of cubes described at the end of the previous chapter into

the current arrangement, with cubes mapping to cubes and relevant vertices mapping

to relevant vertices.



38

Thus, An can be made to “fit into” the even or odd arrangement in such a way

that any interior noncentral cube plays the role of the cube at the origin in An.

However, it will not usually be the case that the number of relevant vertices shared

by a pair of cubes in the image will equal the corresponding number of shared relevant

vertices in An, because there are usually more relevant vertices in the image. That is,

non-relevant vertices of An may map to relevant vertices in the current arrangement.

Proof. Let x = (x1, . . . , xn) be the coordinates of the center of an interior cube in

the even arrangement, and let J = (J1, . . . , Jn) be its label. Define the isometry

f = (f1, . . . , fn) : Rn → Rn by:

fi(t) =

xi + t if bxi+1c is even

xi − t if bxi+1c is odd.

Clearly, f(0) = x. Now, from our description of An in the last chapter, a =

(a1, . . . , an) is the center of a cube in An if and only if the following four condi-

tions are satisfied:

• ai ∈ {−1, 0, 1},

• if ai = −1, then ai+1 = ±1,

• if ai = 1, then ai+1 = 0, and

• ai 6= −1 for some i ∈ N .

Fix one such a, and let K = (K1, . . . , Kn) be the label of the cube centered at f(a).

With these restrictions on a, we must show that K ∈ {1, . . . , p}n. We have:

Ki =
p

2
+ (−1)bfi+1(ai+1)cfi(ai) =

p

2
+ (−1)bxi+1±ai+1c(xi ± ai).

Suppose first that ai = 0. If so, then Ki = p
2 ± xi. Since J is an interior cube, we

have −p−2
2 ≤ xi ≤ p−2

2 , which implies that 1 ≤ Ki ≤ p− 1. Thus Ki ∈ {1, . . . , p}.
Now suppose ai = 1. Then ai+1 = 0, so Ki = p

2 + (−1)bxi+1c(xi ± 1), where

the sign is positive if bxi+1c is even and negative if bxi+1c is odd. Thus, Ki =
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p
2 + (−1)bxi+1cxi + 1 = p

2 ± xi + 1, and therefore 2 ≤ Ki ≤ p. So we again have

Ki ∈ {1, . . . , p}.
Finally, suppose ai = −1, which implies that ai+1 = ±1. In this case, Ki =

p
2 +(−1)bxi+1±1c(xi±1) = p

2−(−1)bxi+1c(xi±1), where the sign is negative if bxi+1c
is even and positive if bxi+1c is odd. So Ki = p

2 − (−1)bxi+1cxi + 1 = p
2 ±xi + 1, and

again Ki ∈ {1, . . . , p}.
It remains to show that K 6= (p, . . . , p). But ai = 0 for some i ∈ N , and therefore

1 ≤ Ki ≤ p− 1.

The proof is similar for the odd arrangement.

Now, if it were true that any pair of cubes in An shared the same number of

relevant vertices as the images of those cubes shared in the even or odd arrangements,

then a submatrix of C would equal the Cartan matrix of SL(2, 2n). In that event, we

could appeal to the previous chapter to show that the columns of M corresponding

to the cubes in the image of f were uniquely determined. However, as we’ve noted,

cubes in the even and odd arrangements may share additional relevant vertices that

are not present in An.

Fortunately, we were able to prove the main theorem of chapter 2 with restricted

assumptions. In the situation where every decomposition number is known to be a

zero or one, we obtained a proof while only making use of the Cartan invariants c
IJ

,

where max(|I|, |J |) ≤ 1. Therefore, we could use the theorem from chapter 2 if we

only knew that the number of shared vertices of a pair of cubes in An was equal to

the corresponding number of shared vertices in the even or odd arrangements, for

pairs of cubes I and J with I = ∅, or I = {k}. Since every vertex of the cube labeled

∅ in An is already relevant, this cube poses no problems. The cubes labeled {k} are

those that share an (n− 1)-dimensional face with ∅, so we must show that the cubes

in the even or odd arrangements which share an n−1-dimensional face with the cube

labeled J also have the property that the number of relevant vertices they share with

another cube in the image is the number of relevant vertices that the corresponding
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cubes in An share. Unfortunately, this is usually false.5,6

To remedy this problem, we introduce the idea of a virtual cube. Let Q be a formal

Z-linear combination of labels of simple modules:

Q =

q∑
i=1

uiJi.

If K is a label of another simple module, we can define a “Cartan invariant” of Q

with K in the obvious way:

c
QK

=

q∑
i=1

uicJiK
.

Furthermore, if we associate a Z-linear combination of relevant vertices to Q by

counting each vertex of Ji a number of times equal to ui, then this “Cartan invariant”

clearly has the following meaning: c
QK

is the number of vertices thatK shares withQ,

where each vertex of Q is counted a number of times equal to its multiplicity (and the

origin counted for twice its multiplicity). For instance, referring to the principal block

of SL(2, 9) in figure 3.2, we see that if K = (3, 1) and Q = 4 · (1, 3) + (2, 2)− 2 · (1, 1),

then c
QK

= 4c13,31 + c22,31 − 2c11,31 = 4 + 2− 2 = 4. Thus, a Z-linear combination

of simple modules can be made to behave just like a single simple module from the

viewpoint of computing Cartan invariants. Finally, we note that if Q and R are both

Z-linear combinations of labels, then c
QR

can be calculated by an obvious application

of the distributive law.

Definition 24. A Z-linear combination Q of simple modules (all in the same block)

is a virtual cube if the associated formal sum of relevant vertices has the following

properties:

1. Each vertex occurs with multiplicity zero or one, and

5. This is actually true for the cube J = (p− 1, . . . , p− 1) in the even arrangement. For
this one cube, the appropriate portion of the Cartan matrix is identical to the portion of
the Cartan matrix of SL(2, 2n) with max(|I|, |J |) ≤ 1, and the argument from the previous
chapter can be used directly. In this case, a submatrix of D is equal to the decomposition
matrix of SL(2, 2n).

6. This is also true when n = 2, in which case a much simpler argument suffices.
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2. The vertices with multiplicity one, taken as a set, form the vertices of some

k-dimensional unit cube, for some k ≤ n.

Thus, going back to figure 3.2, we see that Q = (1, 1)− (2, 2) + (1, 3) is a virtual

cube. In fact, it is exactly these types of alternating sums which will be useful to us.

Proposition 25. Every (n−1)-dimensional face of an interior cube is a virtual cube.

Proof. Let J be a labeled interior cube, and let m ∈ N . To avoid notational diffi-

culties, we will show that both (k − 1)-dimensional faces of J in the m-th coordinate

direction are virtual cubes. Since J is interior, we have 1 ≤ Ji ≤ p−1 for each i ∈ N .

Now, consider the set of all cubes whose centers differ from the center of J in only

the m-th coordinate direction. We claim that all of these cubes are interior, with one

exception; furthermore, this one boundary cube has a single p in its label, implying

that its set of relevant vertices forms an (n− 1)-dimensional cube.

To see this, note that the only such cubes which could be boundary are those with

m-th coordinate ±p2 . The label of such a cube K will be equal to J in every coordinate

position except possibly the m-th and (m− 1)-th. For these coordinate positions, we

have Km−1 = Jm−1 or p − Jm−1, which is clearly in the range 1 ≤ Km−1 ≤ p − 1,

and Km = p
2 ±

p
2 . Furthermore, both of the signs occur, depending on whether the

m-th coordinate of the cube labeled K is p
2 or −p2 . Thus, one of the two cubes has

Km = p, and is the boundary cube claimed; the other has Km = 0, which means the

cube doesn’t exist.

We may now construct an obvious alternating sum of cubes, starting from the cube

labeled J , and working in the m-th coordinate direction toward the cube labeled K.

In this alternating sum, every relevant vertex will cancel out, except for those on the

face of J where the alternating sum was started. If the sum started with J , then

the virtual cube so constructed is the face of J which is farther away from K; if the

alternating sum starts with the cube next to J in the direction of K, then the virtual

cube constructed is the face of J which is closer to K.

We are now in a position to salvage the argument proposed earlier. Let J be the

label of an interior noncentral cube. Then there is an isometry f mapping An into the
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current arrangement, such that the cube labeled ∅ maps to the cube labeled J and

relevant vertices map to relevant vertices. Since every vertex of cube ∅ is relevant, we

know that if the cube labeled I in An maps to the cube labeled K, then c∅I = c
JK

.

Now extend the range of f to include virtual cubes. If B = {b} is a singleton label

of a cube in An, then B maps via f to some cube which shares an (n−1)-dimensional

face with cube J . Replace the image of cube B with the virtual cube V corresponding

to this shared (n− 1)-dimensional face. In effect, this eliminates the relevant vertices

of this cube which are not also vertices of J . Thus, if I is a cube in An mapping to

the cube labeled K, we have c
BI

= c
V K

. This eliminates the obstruction to using

the result from the previous chapter.

Next, we extend the matrix M to include columns formally labeled by the virtual

cubes that we used above. Thus, when we apply the result from the previous chapter,

we conclude that a portion of the matrix M is unique; this portion is a submatrix

indexed by the columns involved in the above discussion (some real, some virtual),

and by one row for each of the vertices of the cube J .

Next, we wish to leverage this knowledge of M into a unique determination of

every column within the rows corresponding to the vertices of J . This is not difficult.

Let K be some (real) cube. If c
JK

= 0, then column K of M must be zeros within

these rows, since column J has only ones in this set of rows. Suppose, then, that

c
JK

= 2r. (Since J is not central, this Cartan invariant is always a power of two.)

By examining the Cartan invariants c
V K

for each virtual cube V which shares a face

with J , we are able to uniquely determine column K of M , within the set of rows

corresponding to vertices of J . In fact, this process is completely analogous to the

determination of column I in the previous chapter, in the case when |I| > 1.

Thus, we are able to uniquely determine a subset of the rows of M . Since the

matrix E described above gives one possible matrix that satisfies the conditions of the

theorem, and we have just proved the uniqueness of certain rows of M , we conclude

that these rows must be the same as the corresponding rows of E. Thus, this portion

of M is an incidence matrix of relevant vertices and cubes. Repeating this argument

for each noncentral interior cube J , we can fill in the matrix M row by row, one for

each relevant vertex which is incident to one of these noncentral interior cubes. While
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doing this for some cube J , it may be the case that some of the rows so determined are

already known. However, this presents no difficulty, since there is no harm in showing

that a certain row of M is uniquely determined more than once. The existence of

the matrix E satisfying the conditions of the theorem guarantees that all such unique

determinations of a row will necessarily be the same.

Since we are only using noncentral cubes, we will never gain any information

about the remaining rows of M , namely the rows which (in E) correspond to the

origin. However, these two rows of E are the same, and therefore the undetermined

entries in each column of M must be all zeros, or two ones and some number of zeros.

(Recall that we are not assuming we know how many rows M has.) If c
JJ

is already

accounted for by the number of ones in column J of M , then every remaining entry

of column J is a zero. If J is some column where this is not the case, then column

J must have two more ones, which we place in two new rows. Finally, all such ones

must be placed in the same two rows, since we can examine the Cartan invariants

c
JK

, where J and K are both rows which need two more ones. Any additional row

beyond these two would necessarily be all zeros, which is not permitted. This proves

the theorem.

3.5 The Case p = 3

In this case, we face an additional difficulty: every cube is central or boundary. There-

fore, when An is embedded into one of the arrangements in the way discussed above,

the Cartan invariants of pairs of cubes in the image might bear little resemblance to

the corresponding Cartan invariants in An. Fortunately, the solution to this issue

has already been discussed: virtual cubes. In order to repair the above argument,

we will need to pare down the relevant vertices of cubes in the image to an absolute

minimum, which means mapping every cube of An (except ∅) to a virtual cube which

has no additional relevant vertices.

Proposition 26. Every k-dimensional face of an interior cube, for k ≥ 1, is a virtual

cube.
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Proof. We prove this by induction on k, starting with k = n and proceeding towards

k = 1. The base case is trivial, because every n-dimensional interior cube is clearly a

virtual cube.

Now suppose that every (k+1)-dimensional face of every interior cube is a virtual

cube, and let F be a k-dimensional face of an interior cube. Suppose for the moment

that there is a boundary cube J whose vertex set is a translate of the vertex set of F

in a direction perpendicular to F . If this is so, then we can construct a sequence of

(k+ 1)-dimensional faces L1, . . . , Lm such that F lies only in L1, the vertices of J lie

only in Lm, and each pair (Li, Li+1) intersects in a k-dimensional face (which will be a

perpendicular translate of F ). In this case, the alternating sum L1−L2+ · · ·±Lm∓J
will be a Z-linear combination of labels whose vertex set is F , and we will be done.

Thus, we must prove that there is a perpendicular translate of F which is the

vertex set of some boundary cube. Let A be the set of coordinate directions that are

perpendicular to F , and let K be the label of some (real) cube whose vertices include

F . Translating the cube K in a direction perpendicular to F by one unit is equivalent

to finding a cube K ′ for which K →
B

K ′, for some subset B ⊆ A. Thus, such a

perpendicular translate exists if and only if there is a sequence K →
B1

L1 →
B2

L2 . . . Lm,

where Lm is the desired boundary cube whose vertex set is a k-dimensional cube and

each Bi is a subset of A.

Now, k ≥ 1, so A 6= N . Without loss of generality, suppose that 1 /∈ A. We

claim that we can successively translate the cube labeled K in coordinate directions

in the set A, until we have Ki = p for all i ∈ A. Let i be the largest element of

A. If we translate K one unit in the i-th coordinate direction, we must modify K

by replacing Ki with Ki ± 1 (depending on whether we translate in the positive or

negative direction along the i-th coordinate axis), and Ki−1 with p −Ki−1. We do

this, choosing to replace Ki with Ki + 1, until we have Ki = p. If we performed

this translation operation an odd number of times, we will have replaced Ki−1 with

p−Ki−1; however, this is not a problem, because K was originally an interior cube,

and thus we have 1 ≤ Ki−1 ≤ p− 1. This inequality still holds after an odd number

of translations in the i-th coordinate direction.
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Now we repeat the argument for the next largest element of A, and so on by

induction. When we are done, we will have Ki = p for all i ∈ A, and 1 ≤ Ki ≤ p− 1

for all i /∈ K. Finally, since 1 /∈ A, there is no possibility that Kn will be inadvertently

modified in the final step of the induction.

The resulting cube will have p in its label |A| = n− k times, implying that it has

the same number of vertices as the k-dimensional face F . Moreover, it was obtained

by translation of a cube K containing F in directions perpendicular to F . This proves

the proposition.

This proposition would allow us to modify the function f discussed above even

further, so that every cube except ∅ is mapped to a virtual cube in the even or odd

arrangement. However, this is not sufficient to prove the theorem for p = 3, because

the even and odd arrangements are in the space Rn/{±1}. Thus, if we carelessly map

An into the even or odd arrangement, with ∅ mapping to a central cube, we may not

have a one-to-one function on cubes and vertices. In fact, this is why we avoided the

central cubes in the first place when proving the theorem for p ≥ 5.

To circumvent this difficulty, we make the following observation: every cube in

An except ∅ has at least one of its central coordinates xi equal to 1. Therefore,

it is possible to precompose f with a rotation so that every cube except ∅ in An
maps to a virtual cube which lies on the boundary of the current arrangement. In

other words, we arrange to map the relevant vertex (−1/2, . . . ,−1/2) in An to the

origin. With this modification, every cube except the image of ∅ avoids the origin,

and we are guaranteed a one-to-one mapping of cubes and relevant vertices. Thus,

the Cartan invariants in the image are now equal to the Cartan invariants in An, with

the single exception that c∅∅ changes from 2n to 2n + 1 in the image. In this case,

it is clear that the result from the previous chapter still holds, with the row of the

decomposition matrix corresponding to the trivial module occurring twice instead of

once.

Applying this result, we obtain a portion of the matrix M (extended by the

addition of columns for the virtual cubes we used) with rows corresponding to the

relevant vertices in the image of f , and with columns corresponding to the single real
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cube and many virtual cubes which played a role in the calculation above. We now

finish the argument just as in the case p ≥ 5.



APPENDIX: CYCLIC BLOCKS

In this appendix, we prove Proposition 1 from the introduction. Let B be a cyclic

block of kG with Cartan matrix C, and assume the Brauer tree ofB has no exceptional

vertex, and is not a star with three edges. We will show that the matrix equation

D D = C is sufficient to recover D, up to a permutation of rows.

Since the Brauer tree has no exceptional vertex, we have c
MM

= 2 for any simple

kG-module M . If M and N are distinct simple kG-modules, then c
MN

= 1 if the

edges M and N of the Brauer tree share a vertex, and c
MN

= 0 otherwise.

The proposition is clearly true if the Brauer tree is a single edge, so assume there

is more than one simple kG-module. We begin by finding a kG-module A with the

property that, whenever c
AB
6= 0 and c

AC
6= 0, then c

BC
6= 0. The edge in the

Brauer tree labeled A will necessarily have one endpoint not connected to any other

edges. Let {B1, . . . , Bk} be the simple modules with nonzero Cartan invariants with

A. We know that each of the columns {A,B1, . . . , Bk} of D has two ones, and each

pair of these columns shares a single one in some row of D.

Suppose column A has ones in rows R1 and R2. If k = 1, then we may place ones

in column B1 in rows R1 and R3 without loss of generality. If k ≥ 2, then we argue

as follows: without loss of generality, place ones in column B1 in rows R1 and R3.

At this point, we have a nontrivial choice for which rows have ones in column B2: we

may place ones in rows R1 and R4, or in rows R2 and R3.

The latter choice must be eliminated, since it leads to a Brauer graph which

contains a triangle. Since the Brauer tree is not a star with three edges, either k > 2,

or there is an edge U which does not share a vertex with A, but does share a vertex

with B1 or B2. If k > 2, then we observe that column B3 must share exactly one

one with columns A, B1, and B2, which is impossible in the latter case. If there is an

edge U which shares a vertex with, say, edge B1 but not with edge A nor edge B2,

47
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then column B3 has a one in some row which has a one in column B1, but zeros in

columns A and B2. Again, this is impossible in the latter case.

Therefore, column B2 has ones in rows R1 and R4. Continuing with the columns

Bi for i > 2 (if any), we clearly see that each of these columns must have ones in

rows R1 and Ri+2 (without loss of generality). Finally, if U is a simple module with

c
AU

= 0, we clearly have zeros in column U in rows R1 and R2.

Note that we have completely determined rows R1 and R2, and column A, of

D. Furthermore, row R2 contains a single one in column A. At this point, we can

remove row R2 and column A from the decomposition matrix, and recalculate a new

matrix C ′ = D D which has one fewer rows and columns. Applying induction, there

is a unique matrix D′ such that D′ D′ = C ′.7 Adding back row R2 and column A

recovers the original decomposition matrix, which is now uniquely determined. This

proves the proposition.

A careful refinement of this argument would show that the proposition holds if

B has an exceptional vertex of multiplicity two. If the multiplicity is three, we must

also exclude the case of a single edge, in which case C = [4]. If the exceptional vertex

has multiplicity four or larger, then the theorem is false for every Brauer tree B. For

instance, if B is a star with four edges, with exceptional vertex of multiplicity four in

the middle, then:

C =


5 4 4 4

4 5 4 4

4 4 5 4

4 4 4 5

 ,

7. Of course, it is possible that we will arrive at a star with three edges after applying
induction some number of times. However, in such a case, the original Brauer tree was not
a star with three edges, so we may use a simple module whose column of D has already
been determined in order to eliminate the possibility of a triangle in the Brauer graph.
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which admits the decomposition matrices

D =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1


and D =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2 2 2 2


.

In general, we can replace any row of zeros and ones which appears four times with

a single row of zeros and twos.

Moreover, the proposition is also false if the Brauer tree is a star with three

edges. In this case, we see from the proof that there are two possible matrices D with

D D = C, namely

D =


1 0 0

0 1 0

0 0 1

1 1 1

 and D =


1 1 0

1 0 1

0 1 1

 .

Of course, the second possibility can’t be a decomposition matrix, since it is square.
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